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1. Introdaction

The missile map-matching problem for guidance updating or target homing is shown in Figure 1, The
problem as defined here consists of locating the position of a sensor image relative to a reference map
which is stored onbcard the vehicle's computer. Once the match location is found the rslative location
between the two map centers can be used to update the vehicle's navigational position. The two important
performance considerations are the avoidance of false fixes as measured Ly their frequency of occurrence

\and the accuracy with which the position fix can be made.

his paper describes the overall design and evaluation of map-matching systems, (For additional back-

ground information, the reader is referred to references 1-10,) Figure 2 shows the layout of a typical
system design, Here the system parameters associated with the reference data, sendor environment and
vehicle are integrated to determine a model of the image dynamics. This model usefd in conjunction with a
signature prediction model is used to construct the reference map or set of referenc,'e maps to be stored on
the vehicle. /

In the map-matching problem a number of errors can develop between the sensed image onboard the
missile platform and the image reference map stored in the vehicle computer. Those errors can be
categorized into four generic classes depending on their impact on the composition of the sensed image
relative to the reference map. Global errors which impact all elements in the sensed image are generally
! accommodated by preprocessing while all other types of errors must be accommodated by the choice of the
| matching algorithm., The scene selection process is important for determining that the reference map area
| contains sufficient information of a nonredundant nature to successfully perform the matching task. The
scene selection process consists of a two part screening process, The {first part consists of various
mathematical tests which determine to a first level the amount of independent information and
redundancy within the scene. The second part consists of simulation to determine the acceptability of the
scene under real world flight conditions. Finally, a system verification process is required to determine
from the nature of the matching data whether a successful match has taken place and if not, what appropriate
action should be taken,

This paper is divided into four additional section?:‘\Section 2 describes the problems associated with
describing a scene mathematically and with the time and spatial-varying nature of scene signature fer
various sensor types. This section describes the nature of environmental fuctors on image dynamics and
their impact which zan be measured in terms of predictive errors, nonstructured errors, and contrast
reversals for various sensor wavelengths, Finally, remedies are discusaed which can mitigate the effects
of errors due to image dynamicu.)

“>Section 3 describes the problems associated with 1sference map construction and discusses the scene
{nlection proceu by which%'good‘ﬁreference scenes are progressively screened out from those that are
ot so goo
I
9Section 4 del cribes the compatibility of various classes of algorithms to accomrmodate each of the four
categories of error sources., Ultimately, since the magnitude cf these errors is seneor dependent, this
section crou*orreluteo algorithm appropriatencas for each sensor wavel-ngth.\\

(\,\) Finally, Section 5 describes the mathematicai process behind developing meagures for system perform-
ance. This section is divided into two parts. In the first part the general scene/2rror model is discusred
and a mathematical approach (through a list § assumptions and approxiraations) is outlined which can be
used te predict the probability of false match dccurrence based on a number of system parameters. In the
second part of the section, one is concerned witli (given a particular scene) using the statistical data frorm
the map-matching algorithm to estiinate the system performance in near x-eal—time,h
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Image dynamics and_its impact on compgrison of sensed image and reference map

Figure 3 depictas the impact of dynamic changes in the scene signature on the map-matching system, As
indicated in the figure, the sensor/image interaction is influenced by a number of environmental factors.
These factors, combined with inherent time-varying material physical and electrical properties, produce an
oscillation in the scene signature. Dynamic changes in the sensor scene when compared to a time-
stationary reference scene can cause significant errors to exist between the two maps, These errors, if
unaccounted for, are generally a major cause of failure in map-matching systems,

It is the purpose of this section of the paper to:

1, describe the scene composition,

2, discuss the impact of environmental and inherent scene factors on signature dynamics,

3, discuss and quantify the nature of the map difference errors when sensed and reference map
are compared, and

4. outline remedies for accommodating map difference errors in the system,

As the influence of the environmental and inherent scene factors is wavelength or frequency dependent,
the discussion will focus on the moast common active and passive sensor categories (i, e., opticalrneu- IR,
middle IR, thermal IR, and microwave).

The following section will describe the reference map selection process including methods for choosing
reference maps to reduce the map difference problem. The subsequent section will discuss the role of
various types of algorithms in accommodating map difference algorithm and other types of system errors.

Sensor Scene (Terrain) Map
Comparison
Sensor Environmental Scene Time m" Map
Description influences Description varying of reference difference
- wavelenth - atmosphere™ " |- homogeneous |"""scene ~—|map & sensed|  "errors
(frequency) - meteorology regions signeture image - contrast
« ground - resolution & reversals
resolution texture depen- - prediction
dent elements -~ non-
structured
Reference
Inherent time map
varying scene (non-tin.e
properties varying)
~ physical

- electrical

Reference map generation

- wavelength conversion
(if necessary)

- geometry conversion

Figure 3. The impact of image dynamice on map comparison

2.1 Composition of the scene

The scene is the moat complex component of the map~matching problem and the most difficult to model,
Scenes can be described in the visual domain (the eyeball process) as being composed of a set of features.
Actual sensor data, broken down by resolution elements, are described by a set of intensity values. There
are regions of intensity values in the scene which can be considered aralogous to features in the visual
domain, These are homogeneous regions* within the scene which can be considered equivalent to features
(bacause a feature can be defined by a single homogeneous region or set of homogeneous regions). Froma
physical standpoint, homogeneous regions are areas in which the signature (reflectance for visual and radar,
emited power for middle and thermal IR, and altitude for terrain contours) is expected to remain fairly
constant, e.g., a grassy field in which all the elemeants in the region are expected to have the same mean
value but not necessarily a constant value,

There exist variations in the intensity level within a ho :ogeneous region, Neglecting the possibility of
sensor noise, this signatur> variation can be attributed to either scene resolution constraints or texture
variation within the region. Scene resolution constraints can cause a perturbation in the signature of the

* We define a homogeneous region to be a set of spatially connected pixels or elements which possess the
statistical property of at least first-order stationarity (constant mean intensity level over the region) and
possibly second-order stationarity (mean and variance constant and autocorrelation independent of poaition),
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region. For instance, one can consider the grassy field not to be uniform but instead to have a few fallen
tree trunks and shrubs dlapersed within it. If the ground resolution of the sensor is of the same magnitude
as the size of the shrubs and tree turnks, then we would expect variations in the inteasity of the grassy
regions due to these objects.* [t should be noted that if the resolution of the sensor were to increase to the
point that dimensions of objects within the grassy field covered several sensor resolution slements, then
these objects would be considered homcgeneous regions in thamselves. In our tree trunk sxample, further
increase in sensor resolut‘on would result eventually in the moss on the fallen tree trunk becoming a
homogeneous region. .Obviously, the process of identlfying homogeneous regions could continue ad infinitum
as the sensor resolution was increased.

Thus, we can further categorize a homogeneous region in the physical domain by the number of resolu-
tion elements containing objects which contribute to a sigrature variation and in the statistical domain by
the number of statistically indeperdent elements which comprise the region. The ''scene resolution' con-
cept (11) provides a useful framework for analyzing the statistical variation of a region**, We shall define
this scene resolution as the ratio of the average of the nur.ber of sensor resolution cells to that required to
make up the eCuivalent of one independent element in the imaged map. As discussed above, sensor resolu-
tion constraints are one contributing factor to ""scene resolution''--the oth.er being texture.

Texture, caused by physical and electrical material variations, can exist even within purely homogeneous
regions. The three primary sources of homogeneous material texture are: illuminator-target-detector
geometry, which includes slope and slope azimuth; directional reflectance and absorpta ice described by
electromagnetic theory (Fresnel's equations) and surface roughness effacts. Texture produced by these
processes can be virtually resolution independent in comparison to those observed within a resolution depen-
dent homogeneous region (i. e., see previous discussion). A mors detailed presentation of homogeneous
material texture v given in the appendix.

¢,2 Signature dynamics

In order to estimate the intensity magnitude and oscillations that occur in sensor imagery, it is first
necessary to understand the relevant physical and electrical material properties and governing atmospheric
and meteorological parameters present. A summary of the governing material properties for each sensor
region is given in Tabls 1. Similarly, relevant atmospheric and meteorological parameters for each
spectral region are given in Table 2.

PO RIS s, ¢ P . P o v

Contrast reversals are of importance to the mission plani:er because of the potentially decorrelating
effect they can have c¢n map-matching system performance. A sumrmary of the relevant parameters in each
spectral region that can induce these effscts is given in Table 3. The diurnal and seasonal impact on
reference area signature characteristics is also important since it provides the mission planner with a
time-frame estimate of when region level shifts, hence contrast reversals, are likely to occur. A summary
i of the time-cycle irnpact on reference area signature characieristics for each spectral region is given in
| Table 4,

M2ttt

; The impact of physical and slectrical material propzrties and atmospheric and meteorological effects on
"r time-varying reference area signature characteristics will now be presented for each sensor region. The

' impact of snow/ice/water on the reference area signature will not be considered here. An estimate of the
magnitude ol contrast reversals it can induce within typical reference areas is given in Section 2. 3.

: .

1

3

L Passive o ;tic%[neu IR. The governing material and atmospheric properties in the passive optical/

3 near IR intexval (. 4p — 1, 6p) are short wavelength reflectance, incident irradiance, atmospheric attenuation,
4 and path radiance, respectively, Contrast reversals in this spectral region are primarily due to changes in :
i material reflectance due to seasona. effects from the vegetation growth cycle. i

The atmospheric effects, particularly attenuation and path radiance, govern the degree of observed con-
trast for a given imaged scene., The effect of atmcsphevric attenuation is to uniformly reduce the received
radiance across the scene. Path radiance, however, introduces additive energy into the imaged resolution
element via direct or indirect atmospheric scattering that originated outside of it. The net effect of these i
two terms is to lower the observed scene signal-to-noise ratio {SNR) for a given sensor. They are usually §
the limiting operational factors in this wavelength region. Complicating operational performance pre- g
dictions in this interval is the fact that the values of most of the governing material and atmospheric
properties are generally a strong function of v velength.

Passive middle IR. The governing material properties in the passive middle IR {3p~5y) rigion are
middle IR reflectance (hence emittance) and thermal inertia (thermal conductivity over the square root of
thermal diffusivity). The predominant atmospheric properties are attenuation, and

% Presuming, of course, that the signaturs of the objects was different from the grass at the wavelength of
the sensor.

*% The scene resolution is crmputed by determining the number of independent (Nj) slements in the image
and then dividing this quantity into N, the total number of resolution elaments in the acene (i.e., N/Nj).
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(illuminator - surface - sensor) gesometry,

Table 1. Governing Fhysical and Electrical Material Properties E
{Decreasing Order of Importance) 3
. .
Sensor Regiop Type Physical m. E
Optical/Near IR P Surface Roughness < .4p=1.6F Reflectance !
and Imaging Geomaetry ]
. 1
A Surface Roughness - 48 -1.6 1 RefNectance ]
and In.aging Geometry
Middle IR P Thermal Inertia - 3 ¥=5¢ Reflectance
Imaging Geometry -~ .4H<1.6¥ Abaorptance
Surface Roughnest - S ¥ gy Emitiance
A Surface Rouchness - 3¢—=85F Reflectance
and Imaging Geometry
Thermal IR P Thermal Inertia - .4p=1.6F Absorptance
Imaging Geomaetry
Sucface Roughness - 84— 124 Emittance
A Surface Roughness - 84 — 124 Reflectance 1
and Imaging Geometry 3
Microwave P Suriace Roughness - Microwave Reflectance ]
Imaging Geometry and Emittance 3
Thermal Inertia «  4H<),6H Abe rptance 3
A Surfice Roughness - Microwave Reflectance
and Imaging Geomeiry
* A=x Active system ]
Pz Passive aystem 1
** Directional slectrical properties exist in each case which vary with surface roughness and imaging 1
]
1

Table 2, Atmospheric and Meteorological Impact on Sensed Imagery :

Sensor Region I*Pe Parameter Impagt on m“rF
Optical/Near | - Small to strong for path radiance and attenuation

A = Small to strong for path radiance and attenuation

Middle IR P - Small to moderate for path radiance
= Small to strong for attenuation i
- Small to moderate for reradiation
- Small to moderate for latent and sensible heat transfer

' Jspending on wind speaed, precipitable water, and

| atmospheric and ground temperatures.

A - Small to strong for attenuation

Tkermal IR P - Smal for path radiance H
- Small to strong for attenuation and reradiation depending
on species, concentration, diameter and temperature of
aerosol distribution prssent.
- Small to micderate for latent and sensible heat transfer
depending on wind speed, precipitable water content and
atmospheric and ground temperatures.

FIGPWUIRE SR

A -~ Small to strong for attenuation

Microwave P - Small for attenuation unless rain is present
- Small to moderate for oxyyen or water (absorption and)
reradiation depending on species concentration present.
- Small to modarate for latent and sensible heat tranafer
{impacts moiatuve availability, hence material emittance
and thermal ensrgy balance).

A

A - Small for attenuation unless rain is present

*- Assumes opsration under cloud cover with o precipitation

- Atmospheric attenuation is dependent on the spacies, concentration and diameter of asroscl distributions
present and atmospheric pressure {(governs molecular species concentration),

S, s i h asmbemie s i kbt S e i s i < e G Al i A it AR A kit O ey
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Table 3. Sources of Image Contras: Reversal®

Sensor Region Type
Optical/Near IR Pand A
Middls IR P

A
Thermai IR P
A
Microwave P
A

Cause

Optical /Near IR
Vegetation Reflectance

Matarial Thermal Inertia

Diurnal 3“-—-5.; Solar
Irradisnce Component

Middle R
Vaegetaticn Reflectance

Thermal Inertia

Thermal IR
Vegeration Reflectance

Atmospheric Reradistion
Thermal Inertia

Microwave
Vegetation lReflectance

'Snov/lce /Water complex cnn produce contrast reversals in ssch imaging region

Table 4. Diurnal and Seasonal Tavircamental Impact on Sensed Imagery

Sensor Region Type
Optical/Near IR P Diurnal
Seasonal
A Seasonal
Middle IR P Diurnal
Seasonal
A Seasonal
Thermal IR P Diurnal
Seasonal
A Sessonal
Microwave P Diurnal
Seasonal
A Seasonal

Time Cycle Impact on Imagery

Sinall to strong (depends on spuctral and
absolute level of illumination imagery is
obtained under).

Small for spectral irradiance changes
(sun's declinstion angle) but moderate for
fllumination level.

M>derate to strong owr vegetation cycle
Moderate to strong over vegetation cycle

Strong: short and middle wavelength
irradiance drives thermal inertia,
and direct reflected Middl» IR
component,

Moderate for spectral and absoluts irradiance

level (hence therinal inertia) differences from

sun's declination angle.

Smill to moderate over vegetation cycle
Small 0 moderate over vegatation cycle

Strory: short wavelength irradiance drives
thermal inertia.

Same a» passive Middle IR
Small tn moderate over vegetation cycle

Small to moderate for high microwave emit-
tance objects (thermal inertia can dominats).

Small for low microwave emittance objects
(sky tempesature dominates).

Small to moderats for high microwave emt .
tance objects (sun's declinaiion angle).
Srmall for low microwave emittance objects
Small to moderats over vegetation cycle de-
pending on canopy and soil moisture content.

Moderate over vegetation cycle depending on
backscatter cosfficient.
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reradiation. The principal meteorological interaction parameters are latent and sensible heat transfer
(evaporation and convection respectively). The material thermal inertia iv related to the net rate of heat
exchange at the surface between the air/material interface. Thermael inertia effects driven by the absorbed
short wavelergth incident irradiance during the daytima gensrally predominate the emitted power component
at night. During the day, both reflected solar middle IR and thermal inertia components contribute to the
observed signature. Contrast reversals in this spactral region are primarily related to material thermal
inertia, whers the smaller the magnitude of this parameter, the greater the tempsrature (hence emissive
power) oscillation. Contrast reversals can also be induced in thic spectral region when a large soclar and
atmospheric 3p — 5u flux is present, coupled with a low to moderate material surface temperature. Here,
the time-varying nature of the downwelling flux passes through a cycle of small to large to small

cnincident with the solar zenith angle. If the 3u — Su solar roflected cormponent is larger thun that due to
material emission, a time-varying contrast reversal can result. .

The limiting atniospheric case due to attenuation occurs when an image is obtained through an atmosphere
with a moderate to large diameter aerosol distribution. In this spectral interval atmospheric attenuation
from aerosols usually predominates over reradiation from preciptable water during the daytime, but at
night the reverse is possible.

Sensible and latent heat transfer can impact the imaged spectral signature in this region >y altering the
ground temperature. This in turn impacts the image signature, particularly at night when t.e ground
emission componant predominateas,

Passive thermal 1R. The governing material properties in the passive thermal IR (8u —- 1<y ) region are
short wavelength reflectance {typically c4pu — 1.6 ), thermal IR emittance and thcrmal inertia. The princi-
pal atmoaspheric properties and moteorological interaction parametere ave identical to those iu the middle
IR region.

In this spectral region, material thermal inertia is the sole cauoe of observed ground signature contrast
reversals. Since a aegligible amount of thermzal IR energy emitted by the sun penetrates the atmosphere,
short wavelength solar irradiance driven, thermal inertia effects predominate the image over the diurnal
cycle,

Atmospheric attenuation in a dry, cloud-free atmosphers is small in this spectral region. A substartial
amount of reradiation (hunce image contrast reduction) can occur, however, when a humid, warm atmos-
phere ia present due to increasing e.nissive power with precipitable water and atmoepheric temperature.
Such conditions will often form the cloud-free limiting case for sunsor operation in this spectral region.

Sensible and latent heat transfer becomes important when a significant difference in atmospheric and
ground temperature exists,coupled with a non- zero wind speed and relative humidity. These heat transfer
components can produce a noticeable signature oscillation for a reference area imaged under widely varying
meteorological conditions. Furthermore, the magnitude of these parametsrs are often difficult to evaluate
due to the lack of the necessary ground truth data.

Passive wnicrowave. The governing material properties in the passive microwave imaging (.3 em to 3.0 am
region are passive microwave reflectance and thermal irertiz. The principal atmospheric parameter here
is the contribution of precipitable water to the sky brightness temperature. Sensible and latent hea: trans-
fer components tend to have little impact on the observed signatures unless high microwave emittance
materials predominate.

Contrast reversals are cnly posaible in this spectral interval in two cases. The first involves materials
with low raicrowave reflectances. Here, tho material microwave emittaiice (times ground temperatuse)
component predominates and the resulting cnergy balance, hence imagery, behavec similarly to that in the
thermal IR region. ' In the second and much rarer case, a reversal will occur when the sky brightness
temperature is greater than the material temperature. This is generally only possibls under cloud cover
conditions when a substartial amount of precipitable water exists along with a low to modarate ground
temperature (~273°X - ~2900K),” Here, the smitted ensrgy from the precipitable water becomes greater
than that from the reference insterial. As a consequence, materials with a high microwave reflactance
{i. ., matal and water) can nave greater apparent brightness temperatures than those with a high micro-
wave emittance (1. e., s0il). This results in a reversal over the sxpectsd cass where a dry atmoaphere is
prasent,

Coatrary to general belief, the only materialn that can not exhibit the first type of contrast reverssl dis-
cussed above in the 35 GHz and 94 aﬁz bands are metal and water, since most materiale possess high
microwave emittances in these regions at amall scan anglesa, Ae a consequence, regional error shifts (and in
some cases contrast reversals) can result since many common materials (i. s., vegatation, soil, concrete
and rock) exhibit microwave emittance, hence thermal inertia dominated time-varying oscillations. Pre-
diction of vegetation and soi) signature magnitudes and their oscillatons can be very difficult, however,
because of the impact of moisture availability on microwave material snmittance. Like in the infrared
regions, additional instability in the microwavs signature can occur due to atmospheric reradiation effects;
erticularly for metal and water which possess low and moderate microwave emittances respectively.

asdive microwave rignaturs variations for these materials are generally much larger than in the infrared
for similar condidions which produce atmospheric reradiation.

ol




Active systems. For imaging lassre and radare ths joverning material electrical property is reflectance
{or the backscatter coefficient). Atmocipharic absorption and scattering (attanuvation) is often the limiting
environniental factor for laser imaging cystems, although it is usually small for radars. These cystems
are at le.st directly insensitive to many of the complex time-varylug phyeical atmospheric and meteorologi-
cal effects th)nt impact passive systams (i. e., thermal inertia, solar irradianca, and lateat and sinsible
heat transfer).

An additional ciass of active sensors existed that use the spectral transmitted beam in a chase modulated
carrier or range-gated form. The zdvantage of these sensors is that they can be relatively insensitive to
all material and meteorological properties and generally are only limited by atmospheric effects. In the
first case a frequency modulated signal is placed on an nptical laser carrier beam, Very accurate target
ranging and depth information is possible by detecting the phase {rout distortiors of the returned beam
irduced by the object.

The second type of system is operated in a ranging form by measuring the two-way propagatiou time to
the ground or target {down and forward-looking respectively), A common down-looking foim of this system
is a radar altimeter veed in Terrain Contour Matching (TERCOM). A widely used forward-looking form ie
the laser rangefinder used in tactical armored vehicies,

For both types of systems two governing performance facters exist. First, the reflected object energy
must be high enough to produce aa acceptable SNR. This often limits ths operational distance because of
beam dispersion, and atmospheric sffects (lasers only). The second iuvolves the beam pattern itself. If
it is too large in diameter veraus the imaged object, phase information becomes ambiguous for the first type
of system, For the altimeter or rangefindar system this also poses a .roblem due to an increasing
uacertainty in knowing the object that produced the first or .irongest ceturn. Their principal disadvantages
include hardware complexity and lack of maturity {phas» modulated laser) and potential izaccuracy
{altimeters and rangefinders) against point targats due to reference imaging requirements and their usual
one-dimensione) configuration. When targeting conditious permit and oparation essentially invariant to
environmental conditions is necessa.y, these two types of sensor systems should be strongly coneidered.

Atmospheric and meteorological pargmeters. A summary of the relevant atmospheric and meteorologi-
cal parameters on sensed terrain imagery ia giver in Table 2. Hare molecular absorption has not been
directly considared. It is at least implicd, however, since the atmospheric windows utilised for remote
sensing exist in regions where these effects are small. Molacular absorption band characteristics vary with

temperature and pressure for a given species. Aerosol absorption and scattering are less specific, since
they also vary with the diameter distribution present.

ol gl ot

o il

beyond the optical/near and middle regicns. This is a result of the aerosocl dizmaetar distributions typi-
cally present and the small amount of solar irradiance that exists in the tharmal IR sind passive microwave
regions. Reradiation becomes increasingly important with wavelength, and in passive microwave imagery it
is the dominant rain-free relevant atmoaphzric paramreter, Latent and sensible heas transfer :re the pre-

l dominant meteorulogical remote sensing parameters. ard can have a moderate impact on the resulting
energy balance present in middle and thermal IR imaging and slter the resulting emittances of some passive
microwave materials (particularly soil).

' From Table 2 it is apparont that path radizsnce effects caused by asrosol water ducrease noticeably

PRPRISFRE I NP ST

k Time-cycle impagt. Large oscillations and possibly contrast reversals in material signatures nften occur
‘ during diurral and seasonal time-frames. A summary of the relevant phenoineana for active and paseive
sensor systems is given in Table 4. Two factors are evident from the data given. First, the parformance
of each passive ssnsor eystem can be altared by the level and spectral distribution of incident solar irradi-
ance in the atmosphere and at thc ground plane. Sscond, the spectral reflectance, thermal inertia, and
moisture availability associated with vegetation growth cycles on land can significantly impact imaged signa-
tures in uvery spectral band on a ceasonal basis. Only phase-modulated or rangs-gated lase=s and radars
appear to be relatively immune to this problem as long as deciduous tress are absent.

[T T Ve

Two items have been omitted from Table 4 for simplicity. The magnitude and type of atmospheric and
mateovological effscts present prior to and at the moment of imaging are represented by a joint diurnal-
seadonal time cycle probability daistribution function. Likewise, the presence of snow/ice /water within the
reference arca can also be described by another joint diurnal-ssasonal probability distribution function.
These two distributions are very complex (perhaps presently indeterminate) and vnly moderately currelated
with time. Coosequently, at best it is only possible to approximate the impact of these factors on spectral,
time-varying reference area signatures.

PRI

2,3 Map difference exrors 3
From a systems point of view one can categorize all the map differences as affecting: 1

1. the spatial shape of homogeneous regions,

2, the relative mean intensity levels betwean homogensous regions, and
3. the absolute intensity level of a region.
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In the vernacular these effects are commonly referred to as nonstructured ervors, cor‘rart raversals,
and predictive coding errors, respuctively. A comuination of these factors are generally present in senaor
imagery and induce errors in the map-matching process due to their complex nature,

Nonstructured arrors can be broken down into two categories. In the firet case, the impact of the pertur- %
bations is predictable, although it may not be possible or desirable to prepare a large number of reference
scenet for compensatinn. Errors in this class include shadows, which can lead to contrast reversals
within the affected region. Their location can be calculatcd given the illuminator-target-venicle geometry
combined with the terrain topography. Errors of the s+cond type are more difficult to predict, hence to
produce compensating images. These errors include terrain areas obocured by clouds and snow /ice/water.
Here, the joint probability space-time errnr distribution affecting the reference area (hence sach rerolution
slement) is virtually unknown,

The net effect of changes in the atmospheric, meteorological and physical and electrical material pro-
perties is to produce variations in the intensity level of one homogeneous region relative to another, 1f the
intensity level shifts are severe, contrast reversals Letween regions can result. An estimate of the
expected range of contrast ratio reversals between representative natural materials is given in Table &,
Maximum values and the governing paraimmeter are given in two cases for each spectral region. In the first
case, contrast reversal ranges due to physical atmnsphe=ic and mieteorological parameters are given, Ir
the second case, those produced by snow/ice/water are presentad,

Table 5. Estimates of Contrast Reversal Magnitudes and Their Causes

Sensor Region Type Normal Contrast Snow/lce /Water Induced
Reversal Range Contrast Reversal Rangs
Opticul /Near IR Pand A £4,4 db (vegetation/soil reflectance} =6.6 db {snow/soil reflectance) !
E |
| Middle IR P s.8dbor.2X10"3 ¥ f1.2dbor3. 7X 107 % ]
em®-Sy em®-Sy !
(soil thermal inertia) (wet soil/soil) 3
{
A <. 7 db (vegetation/soil reflectance) .4 db (snow/ soil reflectance) j
_ .
r The rmal IR P S.8dbor .4 X107 —f— <1.6dbor 5.4 X 1073 ¥
i cm -Sp cm” -Sy !
F ;
g (soil therma) inertia) (wet soil /eoil)
t A 5,4 db (vegetation/soil reflectance) =<.5 db (snow/ soil reflectance) ;
Microwave P s.2dborl 6x107 1 X s2.4dbor 3.1 10710 3 |
: cm -5y cm -S,
; Ka Band, clear or cloudy sky Ka Band, clear sky (wet snow/eoil)

(soil therinal inertia)

ke Mt s o

A pcssible but small (tree/field) %13 db, X Band (wet snow/soil)

Strictly speaking, signature variations caused by snow/ice/water are predictive errors. The effuct of
this complex is to produce random space and time-varying signature boundaries, hence artifical homo-
geneous regions, within tha reference urea. As a result, contrart reversals can occur within the sensor
image due to signature variatioas between homogeneous regions created by the snow/ice/water and tnose
from the nominal, underlying material signature. Preprocessing techniques that emphatize homogeneous
regions in the sensor scene can produce catastrophic map-matching fallures when snow/ice/water are likely
to axiast.
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For the pasaive optical. near IR and all active cases, the output is given in db change in material
reflectance. For the pasrive middle and thormal IR, and microwave cases, results are preerented in both
watts /cmZ -steradian and db of radiance change between regions. Results are similarly given in the snow/
ice/water cases excopt the signature of the perturbing state is compared directly to a nominal material.
Results for the passive rniddle and thermal IK, and microwave cases were determined with the aid of a
sophisticated atmospheric boundary layer model. Contrast reversal ranges were not computed for man-
made materials because of the complexities introduced by geometry and internal heating (for the middle and
thermal IR cases).

Contrast revergals produced by means other than snow/ice/waier will first be sxarnined, From Table 5,
i* is clear that the vegetation cycle can produced significant contrast reversals against soil (as well as other
material) backgrounds for active and passive optical/near IR and active middie and thermal IR imaging
systems. The largest reversals in the passive middle and thermal IR cases, howoever, are generally pro-
duced by solar irradiance driven thermal inertia differences between materials present. Contrast reversals
can also occur in the passive inicrowave region due to the vegetation cycle, where the primary contributing
factors are soil and plant moisture availability. Reversals or intensity shifts between homogenous material
regions are primarily produced in this spectral interval by moisture availability and thermal inertia effects
which impact the microwave emittance and gsound temperature (hence the emissive powsr ground component)
dependirg on the climatic conditions present.

When contrast reversals due to predictive errors from snow/ice/water are examined, it is clear that the
magnitudes produced by this cause are greater than those from the corresponding non-snow /ice-water (vege-
tation cycle and thermal inertia) cases in every {nstance. Although these values may serve as reasonable
uppe.s bounds, the mission planner should be aware that changes in the snow /ire/water atate can produce
substantial signature vairations over a short to long tima -frame due to the coinplicated physical and
electrical properties of this material complex.

From this, it is clear that no imaging spectral region is immune from contrast reersal effects. It is
possible, howaver, to reduce their magnitude, or in some cases eliminate them entirely if careful nominal
signature prediction is utilized together with criteria for eliminating regions where lurge signature oscilla-
tions will surely exist. A more detailed discussion of this problem is given in Section 3, 3,

As indicated in Figure 3, a reference generation proress is used to develop an image for map-matching
purposes. Obviously, to ensure systems performance this processing step must have the highesat degree of
accuracy poseible, Two types of predictive errors can arive from less than a perfezt process. The first ia
the result of having to synthetically create imagery in a given spectral region when source data are unavail-
able., The second involves utilizing real or synthetic reference imagery selected or gensrated with one set
of environmental parameters but used against another where a significant signature divergence hac occurred
The missicn planner should use a nominal rather than abnormal reference image when large signature per-
turbations are poasible which can not be accurately predicted.

When spectral band conversion is necessary the materials within the refere.ace area must first be identi-
ficd, The synthetic image signature is generated by using the known physical and eiectrical properties of
the identified materials in conjunction with the specified illuminator-target-detector geometry.

A compilation of factors influencing the accuracy of reference image prediction versus the actual scene
signature is presented in Table 6, An estimate was made of the expectad prediction errurs for homogeneous
region2 within representative reference areas for each spectral region and {s given in Table 7. Reasonable
uncertainty values of perturhation components given in Tables 2, 4, and 6 were used tc generate thene esti-
mated regional errors. Although these values should only be used as a guide, they can provide the mission
planner with an estimate of which map-matching algorithms can not bs used with certain forms of spectral
imagery. This is due to the performance breckdown of some algorithm classes with increased regional
errors, The estimated regional errors in Table 7 include contributions from material identification where
appropriate.

Results given in Table 7 were calculated using ditvrnal, seasonal, and yearly time-varying signature esti-
mations for a hypothetical reference area composed of 45 peicent vegetation, 30 percent soil, 20 percent
concrete, and 5 purcent rock. Snow/ice/water complex materials were excluded from this atalyais.
Vegetation posseases the only time-varying dielectric signature variation (excluding snow/ice/water) in the
optical /uear IR region, As a consequence the error bounds given in Table 7 for active and passive types in
this interval should be evaluated accordingly when other vegetation proportions are present. Although not a
factor for an active system, large actual versus predicted error boundi for passive optical /near IR systems
can exist if diurnal operation is desired due to significant spectral irradiance variations present in day
versus ambient night light.

As in the optical /nea: IR case, the primary source of estimated versus actual ragional error bounds in
active middle and thermal IR, and microwsave images is due to the tiins-varying vegetation signature pro-
sent. In these Intervals, however, the general lack of source data necessitetes using a material
identification step in producing synthetic reference imagery. The resulting errors in this procedure coupled
with the lack of a complete physical and electrical material properties catslog produce errors in the signa-
ture translation process,
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Table 6. Parameter Error Impact on Intensity Estimate Accuracy
(Decreasing Order of Importance)

Thermal IR

Middle IR

Microwave

slope /slope asimuth
seasonal

moisture availability
surface variations
diurnal

reflectance knowledge

Imaging weather
thermal inertia
diurnal

pre-imaging weather
slope/slope azimuth
moisture availability
seasonal

subsurface variations
moisture availability
albedo knowledge
surface variations
emittance knowledge

Imaging weather
thermal inertia
moisture availability
slope/slope azimuth
pre-imaging weather
seasonal

subsurface variations
albedo knowledge
surface variations
diurnal

emittance knowledge

Moisture availability
the rmal inertia
imaging weather
surface variations
emittance knowledge

Type Passive Active
Cptical/Near IR Imaging weather Imaging weather

alope /slope asimuth
seasonal

surface variations
moisture availability
reflectance knowledge

Imaging weather
s)ope /slope azimuth
surface variations
seasonal

reflective knowledge
moisture availability

Imaging weather
slope /slope azimuth
surface variations
seasonal

moisture availability
reflective knowledge

Slope/slope azimuth
surface variations
seasonal

moisture availability
reflectance knowledge

In the passive middle and thermal IR cases, the primary source of estimated versus actual regional
error bounds is due to the ground emission component governed by the thermal inertia of the materials pre-
sent, In addition to the large regional error present between most day/night pairs analysed in these cases
is the fact that a high degres of anticorrelation, indicative of the inherent contrast reversals, also existed.
These effects are generally noted when materials with a moderate to high range of thermal inertias are
present within a reference area. As in the active cases previously mentioned, material identification errors
and data gaps in material property librariea also contribute to the regional errors present.

As previously discussed in this section, when materials with high microwave emittances are present
within a reference area, the resulting time-varying passive microwave signature can behave similarly to
that in the middle and thermal IR regic -, If materials with mocerate to low microwave emittances are pre-
sent, the variation in the ground temperature component of the apparent brightness temperature due to
material thermal inertia effects is damped, and a greater degree of regional error stability results.

In the case of range or phase-modulated sensors, the principal source of predicted versus actual regional
errors is due to the time-varving nature of vegetation signatures (particularly decicuous trees) present
within the reference area. A high degree of refersnce atability is possible with thess sensor types if care-
ful reference scenr: screening is utilized,

L
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Table 7 Estim-ted Versus Actua’ Regionai Error Bound :*

*k
Expected Error Bourds

Spectral Interval Type Low High N
Ogprical/Near IR P 15% 25%

A 10% 20%
Middle IR P 20% 2100%

A 15% 30%

3

Thermal IR P 15% 2100%

A 10% 30%
Microwave P 15% 21009 ***

A 20% 35%
Range or Pnase- A Small except when deciduous trees present

Modulated Sensors i

—
% Exclusive cf vvcw/ice/water complex

. %  The average i ‘zrenct between the c:tual mean intensity
| level differunces among regions and the predicted intensity
: lavel difference among regions divided by the actual
intensity range period spread among regions.

} *%% Whei vegetation fraction is replaced by metal, error
bound range is 15% to 30%.

2.1 Remedies

flor: .as. reversals. nonstiactured, and _rr¥’ative errors can cause map-m-iching performance degrada-
tiont ¢ : - an other :vvor types (i.e., gcometl - - distortions) are minimal, There are, however, four
diffey: 1 £ ~cdy cat:, - ¢ . wnat can miaimize the impact of these errors on map-matching systems
verformaace, They aulude: (1) accurate nominal signature prediction, (2) proper scene selection,
(3) algorithm flexibility, and (4) adaptive performuace prediction.

Accurate nomnianal signature prediction is Jcsirable to reduce level shifts, hence minimize contrast
reversals between homogenrous regionc within the reference area. Errors present in the signature model,
choice of nominal atmospheric conditions or material identification process (if utilized) will all contribute
to reduced map-matching performance. Although preprocessing the reference and/or sensor scenes can
potentially reduce the impact of global and local bizs anc gain changes, the results are quite sensitive to
sccurately predicting the correct time-varying spatial and intensity structure of the image, If applied
improperly, preprocessing steps can actually reduce rather than increase systems performance. An addi-
tional discussion of these tactors is given in Section 3.

it T ity Ve S A5 i aram

Proper scene selection is important for two major reasons. Areas that are prone to have large signaturs
variations in a given spectral region due to contrast reversals, nonstructured or prediction errors should e
identified and clirninated if possible in the scene selection process. As a consequence, an accurate
reference scene screening procedure is desirable so that an estimate of the probability of false fix (Pgs) can
be determined undcr a varizty of environmental conditions for a given area. It is necessary here to evaluate
-ne area for intrascene redundancy unde- an expected operational SNR. If an unacceptably high Pg results,
e caadidate reference image rhould be rejected. A more detailed p:'esentation of these topics is also
glven in Section 3,

It is desirable to utilize ' .ap-mztching algorithms that oficr a degree of insensitivity to envircnmental t :
perturbations, geometric dwtortions and SNR while. accuratsly iocating the true matce!: point. Each ‘
algorithm cla:* ‘correlation, icature extraction, and hybrid) has its own advantages und disadvantages i
depending on the type of imagery processvd and the magiz‘tude of the distortions prazeent. A more detailed R
discussion of this topic is given in Se~tion 4. } ‘

Since map-matching algorithm performance begins to break down with increasing distortion present
in sensor imagery, it is desirable to utilize a technique that provides a confidence estimate of the quality of ‘
the fix. A generally used method is to examine the surface statistics produced by the map-matchi .g
algu~ithm correlation of reference and sensor scenee. Utilizing a simple technique, however, thast does not
compensate for the original scene properties or the impact of the algorithm itself on the resulting surface
d.stribution can be inaccurate when typical distortions are present. A more detailed discussion of adaptive
performance predictions is given in Section 5, 2.
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3. Reference map construction and scene selection process

Figure 4 describes the overall map construction and scene selection process., Several steps are
necessary to develop a refsrence map from raw sensur data. In the first step of the process, it may be
necessary to identify the scene material (especially if a different wavelength is to be utilized) and geometri-
cally correct for other viewing aspects. Once this is accomplished the scene signature can be predicted and
a nominal signature determined. Due to environmental factors and other time-varying variations inherent in
the properties of scene, it is also necessary to predict perturbations to the nominal that are likely to occur.
Having completed the signature prediction task it is necessary to construct th+ reference map and check via
the scene selection process that it is adequate for the map-matching task, Ir constructing the reference map
in many cases it is necessary not only to predict intenaity levels but (depending on the matching algorithm)
also to identify homogeneous regions within the scene, Once this is accomplished the scene can be checked
via mathematical techniques to ensure that it contains sufficient inforration for matching purposes and that
the scene is sufficiently unique to avoid any major inter-scene redundancy problems. Finally, the reference
scene must be tested via simulation to ensure that it is suitable under real world conditions.

This section will briefly examine:

1) the conversion process,

2) the problen:s associated with signature prediction,
3) construction of the reference map, and

4) the scene selection process.

Conversion Signature Reference Map Scene
Process Prediction Construction Selection
lslaw - Material L D, - Nominal - Signature - Math Tests Reference
eNSOT —~wend — — — —e M
Data - Geometry - Perturbed -Reglon - Simulation ap
Identification Tests

= Environmental factors

= Variations in physical
and electrical scene
properties

Figure 4. Reference map construction and scene selection process

3,1 Conversion process

As di .cussed previoualy the first phase of reference map construction generally involves conversion of
the raw sensor data: 1) to the wavelength or frequency of the sensor onboard the vehicle and 2) to the geo-
metrical perspective from which the sensor is to view the scene. Because the raw data is generally not at
the same wavelength as the sensor it is necessary to estimate the material properties of each region of the
scene. Since many materials have very similar broad band reflectance properties in the optical/near IR por-
tion of the spectrum (from which most raw imagery originates) there may be significant mis -identification
errors which can create map-matching difference errors and ultimately degrade total system perfarmance.

The other major almost insurmountabla problem is to adjust the imagery for the geometrv perspective
which the sensor is likely to see. For systems which look directly down (down-looking systems) the
geometry corrections are quite simple since one can assume a flat plane model for the ground, For other
non-down looking systems the geometric conversion process involves developing 3-D target model from the
original 2-D imagery and then creating a 2-D image at the anticipated perspective angle. Since the vehicle
may not actually fly the nominal trajectory, non down-dooking systems are subject to geometric errors
which require significant processing efforts to remove,

3,2 Signature prediction

Signatures of the reference map need to be determined not only for the final reference map(s) which are
stored in the vehicle for comparison but also to test (via simulation) the performance of the system.
Seasonal mapu of i“s reference area may need to be developed and stored for use in at least some map-
‘matching systems. Tepending on sensor wavelength and map-matching algorithm it may also be necessary
to store separate ref.ience maps which account for diurnal, atmospheric and meteorological effects on the
reference scene image. The mission planner or reference scene evaluator {is cautioned not to develop
overly sophisticated g:zaature models when an underspecified set of conditions will exist. Even worse is
the case where poor guesses are raade for certain input variable magnitudes; since in some cases this will
result in nominal reference signature with greatsr error than that from a simple model.
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Perturbed signature variations from the nominal are required to test the performance of the system
under a variety of diurnal, seasonal, atmospheric, and meteoroiogical conditions. One should utilize this
procedure to determine whether several reference maps will perform better under a variety of signature
conditions than a nominal signature prediction which is rnt accurate for any one scene condition but is
designated for compensating for thase variational effects.

3.3 Reference inap construction

In the reference map construction area there a.; two questions which need to be addressed. First, what
characteristics should the reference scene possess? Second, how should the reference scene be evaluated?
In this subsection we shall briefly discuss the choice of a reference area. In the subsequent sectior we shell
dlscuss the simpler question of reference scene evaluation.

Table & lists some of the characteristics in the ideal reference map case versus the real wcrld situation,
i the ideal reference map characteristics shown in this table existed then no reference screening or evalu-
ation procedure would be necessary. Philosophically, one can not control mother nature nor can one obtain
agreement (even .f one could control mother nature) on what scene characteristics (number of homogeneous
regions, interpixei correlation length, etc.) are best for map-matching systems. The only sure thing that
can be said about reference map construction is that certain signaturz characteristics should be avoided, and
hence this is the major topic of the following discussion. Since many types of algorithme requirs that homo-
geneous regions or features be identified in the reference map a brief discussion of automatic techniques for
the region extraction is included here.

Table 8, Ideal Veraus Probable Reference Scene Characteristics

ldeal Case Probable Case
j, Error free source data base Source data base has:

- Finite SNR }

- Environmental and geometric distortions
present, i
No reference map praparation errors Datum plane transferral errors 3
[
]

Imperfect material identification and signature
models used in spectral translation, | -

: q
: Reference scene contains Reference scene usually tontains:
i - A single homogeneous region - Several homogeneous regions -
; - -~ No intra-scene redundancy - At least some intra-scene redundancy l
L - Statistically independent scene elements - Interpoint scene element correlation '
i - Simple statistical intensity distribation -~ Complex statistical intensity distribution

E - Time and space invariant signature - Time and space-varying signature with

without contrast reversals. contrast reversals,

Proper scene selection, Because of the complexity possessed by most spectral imagery and its non-
linear space and time-varying signature characteristics, the reference scene selection process is less than
an exact science, It is generally easier to make qualitative assessments as to desirable or undesirable 1
signature physics traits. It is considerably more difficult, however, to determine exactly how good a candi- :
date reference area is without rigorous evaluation due to the statistical nature of expected environmental and i
geometric distortions, SNR effects and intrascene redundancy. 3

The net effect of these degradations is to impact map-matching algorithm performance, and hence, the
reliability of the fixing process itself. An examination of algorithm class sensitivity to SNR and contrast
;e".{"‘é. zil given in Section 4.3, while a review of fix performance estimation measures is presented in

ection 5.¢.

If a map-matching algorithm is utilized which is sensitive to contrast reversals (i.e., ordinary correla-
tion metrics) then vegetation that exhibits strong time-varying growth variations should be omitted or
minimized in update areas in every spectral interval, Similarly, it is also advisable tc eliminate candidate
update areas where low material thermal inertia and short wavelength reflectance in the passive middle and
thermal IR, and microwave (for high microwave emittance materials) regions predominates to avoid contrast
reversal effects. From Table 5, it is clear that the snow/ice/water complex can adversely alter the
reference area signature in sach spectral interval. Obvicusly then, water bodies should only be included in
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reference areas if they are unlikely to freexe because of the moderate to large signature perturbstions that
can result in active and passive spectral imagery. Unless phase-modulated or range~gated systems are
utilized, disastrous fixing results will often occur with ordinary corralation or feature matching algorithms
when snow/ice/water is present and changes in complex state ars expected.

If map-matching algorithms are used which are sensitive to SNR (primarily feature matching and to a
lesser degree the hybrid processing approach), then regions where strong at—.spheric and meteorological
variations exist should be carefully evaluated. The impact of atmospheric parameiers (particulariy
attenuation and aernsol scattering) typically decreases with increasing wavelength, but still generslly forms
the limiting operational case to the thermal IR region (where reradiation becomes important). In the
passive microwave region, reradiation from percipitable water can introduce small to large signature vari-
ations; particnlarly when materials of differing micrrwave emittances exist. Radars, however, are
generally unaffected by all but the modt severe atmorpher.c conditions.

Although meteorological effects (i, e, , latent and sensible heat tranefer) typically produce a smaller per-
formance degradation than atmospheric ones, they directly imjpact the terrain signature in each spectral
regior when soil moisture is present by governing its rate of evapcration. For each active spectral region
and passive optical/near TR, this appears as a change in soil reflectance. In the passive middle and thermal
IR, and microwave regious soil moisture variations alter the emissive powers of the surface.

Soil moisture effects will gunerally impact or iinary correlation and feature matching algorithm per-
formance the greatest, since its presence in sensor imagery is space and time-varying and is often not
equally proportioned within a homogeneous region. The impact of latent and sensible heat transfer for low
soil moisture and high atmosphsaric precipitable water will generally be to reduce the dynamic range, hence
contrast between homogeneous regions, in passive middle and thermal IR, and microwave imagery.

| In some cases even these nrciedures 'vill be inadequate to produce representative imagery for guidance

! updating purposes. Here, it may be necessary to select muiltiple referance images of the same area to
compensate for Jiurnal and seasonal effects. From this, the mission planner car either select the most
representative image in near real-time or store the set of multiple fzames in the vehicle,

i sl

Diurnal variations in passive middie and thermal IR, and microwave imagery tend to be region-based.
Seasonal variations except those induced by snow/ice/water tend to be interregional for all the candidate
sensor types considered here., As a consequence, the hybrid map-matching algorithm is often desirable if
an adequate SNR exists, From this, it is apparent that proper algorithm selectior. for a given sensor type
can often simplify the task of nominal reference scene prediction. Conversely, rn.sing a sub-optimal
algorithm will often place an overly stringent accuracy requirement on signature prediction, and signifi-
cantly increase the time required for reference scene preparation.

e e n acl

Preprocessing references and sensor images or using binary data correlation can reduce the impact of
signature perturbation factors. As previously discussed, such schemes can n.! 'i* successfully utilized
without a thorough understanding of the expected imaging physics, SNR and geometric distortions present,

If applied blindly, these techniques can often reduce, rather than enhance, guidance updating sysiems per-
formance.

e Mo i bt

Because of the inherent deficiencies in nominal signature prediction for & given rensor type coupled with !
map-matching algorithm limitations, it is often desirable to employ adaptive performance prediction
measures to estimate the quality of individual fixes, A discussion of possible performance prediction
techniques for guidance updating arplications and then limitations is given in Section 5. 2.

; Region extraction (lZ-ZZi. Obviously homogeneous regions or features in the scene caa be found visually; .
: however, when scenes are described digitally by large arrays of rumbers, it is highly desirable to intro- i

duce some level of automation into the process. There are two different approaches for automatically
extracting regions from scenes: 1) those based on edge operators and 2) those based on the stativnarity pro-
perties of the region.

2 et

'

Zdge approaches apply gradient or Laplacian-type operators to the scene and then use threshold techni- :
. ques to decide upon the existence of any edge (the boundary of a feature). The major danger in using these b
5 techniques is that noise and distortion can make it very difficult to locate edges in the sensor imagery.

4 Homogeneous regions may also be located using the statistical property of stationarity (first order, con-
3 stant mean level in the region; second-order, mean and variance constan: and autocorrelation independent of
; position). In this area-based approach, one would grow regions of spatially connected pixels which would 3
1 possess this property, While this approach is less susceptible to problems of noise and distortions it is ]
computationally more complex than the simpler edge operator techniques, 4

| 3.4 Scene selection

The scene selection procuss is concerned with choosing maps for which the probability of matching a
sensor image from within the reference map boundary is high. This process has both physical and
' mathematical implications. There will obviously be signature differences betwean the sensed image and its
§ reference map counterpart due to such factors as geomaetric, atmospheric, meteorological, diurnal, and
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seascnal effectr, These effects on system performanc® can be minimized in the extrerme by either pre-
paring the reference map to be near real-time estimate of the sensor image at the moment i overflies the
reference avea or by developing scene particular algorithms that are relatively invariant to the signature
deviations Leiween the sensor image and reference map., Realisticaily oae must reach a compromise
between these two extremes zad develop a referance map which will reduce the signature deviations
especially in defining the boundaries of a homogeneous region and utilize a matching algorithm that will
compensate for any remaining signature differences between the two maps.

In general, successive screening tectniques from simple math tests to full-blown simulations are
chosen and used to avalaate the candidrie reference area. Since computer processing requirements
increase considevrdly with each screening =:ep, it is desirable for unacceptable refezrence scenes to be
identified and rejected before the final simulation analysis if possible.

The mathematical criteria for reference scene serlection requires that there be (1) sufficient information
for map-ins#ching and (2) a minimal amount of intrascane spatial redundancy within the reference map
boundary. Techniques exist for measuring the information content in the scene to ensure that the sensor
image size (in te rma of resolution elements) contain a sufficient number of indeperdent elements. The more
difficult issue and yet unresolved is the determination of measure for scene uniqueness, Equipped with such
a measure it would be poscible within a reference map boundary to test the ensemble of possible sensor
images to determine the amount of intrascene spatial redundancy.

Heights of the secondary correlation peaks and their magnitude determined by autocorrelating a particu-
lar sensor map over the reference map area yield the location of areas where there is a possible spatial
redundancy problem. Two problems emerge from attempting to use this as a measure of the uniqueness
problem. First, in real world irnagery the icagnitude of the intensity level shifts withir the imagery may
have a significant impact on the location of secondsry peaks. Thus this approach does not seem fruitful for
measuring scene uniqueness., Second, this appronch uses texture information within a region which may or
may not be used in the matching algorithm; consequently, the results may be different when texture informa-
tion is omitted,

The underlying spatial patterns in the map as designated by the size and sh .pe of the homogeneous
regions are the primary concern in dealing with the spatial redundaicy probl.c.n. One method for measuring
scene uniqueness would be to use the correlation surface associated with a specialized hybrid algorithm is
a means for screening reference maps. Here the reference area would be broken up into homogeneous
regiv s and each pixel within the region would be replaced by the mean intens’ty level of the entire region,
An autocorrelation of a particular sensor map over the reference maj; would be performed using a hybrid
correlation algorithm., High secondary correlation peaks would indicate areas where spatial scene
redundancy potentially could be a problem, By pulling out a number of sensor maps from the reference map
boundary and repeating this process one could determine as first-order measure the uniqueness properties
of the reference map.

The most accurate evaiuatinn procedure uses a Monte Carlo simulation co provide an estimate of the
update circular error probability (CEP) and Py for a given reference area under a variety of conditions (23).
Samples are drawn from statistical distributions that represent vehicle position-vclocity characteristics,
and are used to specify the sensor scene location within the reference image. Samples from another distri-
bution are used to specify the imaging environmental characteristics present (i.e., time of day). An
intensity computation for the specified conditions is performed for sach subscene location by using the
appropriate signature model. Noise terms and geometric distortions are similarly iantroduced into the
sensor scene,

The map-matching operation is then performed between the reference and specified synthetic sensor maps
using the selected matching algorithm. The along and cross-track difference between the computed and
actual (sensor scenr draw) match point locations is determined, and by using a predetermined criteria, the
update is catalogued as either a good or false fix.

Since each of the variables are represented by statistical distributions, the simulation can be run a
specified number of times to provide CEP and Pgs estimates over the range of expected update conditions.
From this, the reference scene suitability for guidancz updating applications can be determined versus a
predetermined pezformance criteria.

An extimate of the spatial redundancy present within the reference scene is provided by this procedure
since the location of the sensor scene is randomly selected from within the reference map boundaries. Like-
wise, estimates of the impact of environmental, geometric and SNR effects on reference mcp performance
are also evaluated by this procedure.

It should be recognized, however, that the quality of the performance estimate provided by a Monte Carlo
#imulation for a given reference area is generally a strong function of the preprocessing and map-matching
algorithms and the characteristics of the environmental, and geometric distortions and gNR selected, The
use of different preprocessing or map-matching algovithms for reference scene evaluation and guidance
updnting should be avoided to minimise performance degradations.
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Any uncertainty in specifying the random varizble distribution properties utilized in the simulation will
result in a decreased confidence in the refezence scene evaluation process., If large uncertainties exist in a
given variable distribution, it is better to eliminate the variable from the simulation. If significant
uncertainty errors are present in several distributions, the benefits of employing this form of reference
scene evaluation decrease and the resulting performance estimates produced are often unreliable.

4, Algorithm selection process

Figure 5 describes the overall algorithm selection process. The sensor image ic generally considered
to be some subset of the reference map corrupted by errors. A matching algorithm is then used to locate
the position .t the sensed image in the reference map coordinate system, Based on an analysis of system
performance, it is possible to determine the capability of each algorith:n to accommodate various types of
er ror, Ultimately, since for each sensor type some errors are more dominant than others, it is possible

to determine the most appropriate algorithm for each seasor type,

This section will discuss the following topics: (1) a description and categorization of error sources;
(2) & description and classification of matching algorithms; and (3) an analysis of the compatibility of various
algorithms to accommodate different error sources,

4,1 Error sources

The problems associated with image dynamics, geometrical distostions, noise, and other error sources
can be lumped into four mutually exclusive comprehensive categories, These categories are defined as:

1) Global errors--those errors which uniformly affect the intensity level of all scene elements. This
category would include geometric distortions and bias and gain changes.

2) Regional errors--those errors where the char ;s in intensity levels occurs uniformiy only within
} homogeneous regions within the scene. Examples would include region-level shifts (contrast
‘ reversals) due to image dynamics and predictive coding errors from incorrect reference map

construction,

3) Local errors--errors expected to affect each pixel or grouping of pixels (contained within an
interpixel correlation length) independently. The primary example of this error source is

additive noise.

4) Nonstructured errors--this is a catchall category designed to fit those errors whose effect on the
scene can not be described as being global, regional, or local (an example being a cloud cover over
portions of the target area changing the signature in a nonstructured manner).

The advantage of this formulation of the error source is that by grouping errors into these categories

it is simpler to describe the utility of each algorithm relative to a given class of error source rather than
having to backtrack and deal with each error/algorithm combina:ion on an individual basis.

i Reference Image

Algorithms Analysis
- Correlation System Algorithm/ Appropriate
- Feature Performance Error Algorithm/
matching Compatibility Sensor
- Hybrid Combinations

Senaed
Image

Errors

Global
Regional
Local
Nonstructured

l Figure 5. Algorithm selection process

4.2 Map-Matching Algorithm Classes

There ars three classes of algorithms which can be employed to perform the image matching task. Thess
algorithms include correlation, feature matching, and hybrid classes (24),
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All algorithms perform four operations: (1) transformation of the original intensity data associated with
each resolution element in Loih sensed image and reference map; (2) establishment nf 4 metric for com-
paring a portion of the reference map to the sensed image; (3) the computation of that metric for all possible
positions of comparison between the reference and sensor maps; and {4) a selection rule (generally the
extremum metric value) for delineating the match position based on the, metcic value,

BT

Correlation types of algorithms use the intensity values associated with the resolution elements of each
map (of some transformation of these intensity values, i.e,, normaliiation) as the map data to be used in
computing the metric, Correlation metrics measure either the degree of similaritv(i.e., product type
algorithm) or dissimilarity(i.e., difference squared; between the sensed image and the portion of the
reference map it is being compared against,

Feature matching a.gorithms do not utilize intensity data per se but attempt to work with only features in
the scene (25). This is generally accomplished by using algorithms to locate boundaries or edges between
regions. Edge or boundary information is extended to determine the position at which boundaries or edges
intersect, The position of this vertex point and the direction and number of line segments emanating from
the vertex point form the basis for map comparisons with the metric being some form of a mean square
distance mezasure between locations of vertices in the reference and sensed map., This distance measure
may be weighted by the number and direction of lint segments emanating from the vertex point with multiple
intersecting vertices being weighted more heavily,

The hybrid algorithms (26} uses a combination of intensity level and region identificaticn information in
determining a match location. In this class of algorithm homogeneous regions in the ref:rence scene are
identified and all resolution elements within the region are tagged as belonging to the region. When the
sensor is compared to a portion of the reference map, an assumption is made that this position of compari-
son is the correct one, and the sensor image is broken up into homogeneous regions as identified Yy the
counterpart elements of the reference map, The elements in each region are correlated aeparately using a
correlation algorithm, and the total correlation between the two maps is found by summing the individual
correlations taken over each homogeneous segment of the reference map.

4.3 Analysis of algorithm compatibility

Let us consider which class of algorithm is most appropriate for accommodating each class of error

source separately. Table 9 shows a rating of the algorithm's ability to accommodate each error class,
Examining the errors relative to the algorithms, all algorithms can readily accommodate global errors,
Correlation and hybrid algorithms, however, probably have somewhat more difficulty in accommodating
this type of error. Corrective action for compensating for global errors nclude processing of sensor ele.

. mernts in smaller spatial groups to accommodate geometric errors (27-29), normalization of intensity levels

' to compensate for bias errors and gain shifta, and extending the algorithm . earch dimension to include
searching the scene for scale and rotational effects. Correlation and hybrid slgorithm corrective measures
would rely most heavily on spatial grouping and intensity level compensation, while feature matching algo-
rithms (working with lcss data to begin with) would primarily resort to search techniques to compensate for
global errors,
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Table 9. Algorithm Ability to Accommodate Each Class of Error

! Error Class

i'i Algorithm Global Regional Local Nonstructured ‘
Correlation Medium Poor Good Good

‘; Feature Good Good Poor Poor

E Matching

3 Hybrid Medium Good Medium Good

Correlation algorithms are extremely poor performers in the pri sence of regional errors, the possible
solution being (besides switching to one of the other algorithrs) to store and search over multiple reference
maps, restrict the wavelength of the imagery to spectral regions where regional errors are not likely to
occur, or to locate reference maps in geographical areas in which regional errors are unlikely, Both the
feature matching and hybrid class of algorithms are good in accommodating regicnal errors.

Local errors such as nolse can cause significant problems in the performance of feature matching
algorithms primarily due to the difficulty in extracting features of line boundaries from the sensed imagery
using edge type operators. Correlation type algorithms are virtua)ly immuna to local errors, while hybrid
algorithms are susceptible to this error source if there is also a scene redundancy problem with noise,
making it more difficult to distinguish images with similar spatial patterns. The only corrective meascure
for feature matching algorithms in the presence of local errors is to switch to one of the other two classes

of algorithms.
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Finally, since feature rnatching algorithms use less information in the scene than the other two types of
algorithme, they are most suscuptible to nonstructured errurs where positions of the sensed image may iook
obliterated when compared to the referencs map. (,orrelatiou and hybrid algorithr. s can still perform quite
well even in the presence of large missi~g areas in the sensed image,

As discussed above, cach algorithm has advantages and disadvantages relative to certain types of erro;
sources; however, real world systeins are likely to be faced with a combir.i »n of errar sources to deal
Wiﬂl-

From the discussion in Section 2, it is seen that certain sensor bands have characteristic errore pri-
marily regional (i.e., contrast reversals and predictive) errors and local e; rors. Based on the magnitude
of thesc ~.rrors sources {and excluding the effects of global and nonstructure X errors) it is possible to deter-
mine the compatihility of seasors with matching algorithms. If regionsl =, .rs dominate the process, then
a feature matching algorithm is most appropriate. If local errors doniinate, taen carrelation alporithms
look most attractive, In the presence of both local and regional errors then the ¥ rid class of algorithm
looks most appropriate.

To summarize, all error sources can be placed into one of four generic categories. Using these cate-
gories one can analyze the performance of the three types of algorithms relative to a particular error
source. Some algorithms are more capable than others ut accommodating certain classes of error. In the
end the final algorithm choice will dspend nn determining the weighting of the error sources that the system
is likely to encounter,

An analysis was performed to determine the optimum map-matching algorithm class for each sensor
operating band based on the regional errors given in Table 7, as well as sensor characteristics and oper-
ational considerations. The results of this analysis are summarized in Table 10. Although in no sensor
case is one algorithm class superior to the uthers, a number of caveats have been developed and presented
as a guide to the mission planner to ensure optimum performance.

Table 10. Map-matching algorithm selection based on designated sensor operating region

Sensor Region Type Algorithm Selection*
Optical/Near IR Pk A - Correlation when SNR low

- Hybrid when SNR moderate and vegetation present
- Feature matching when SNR high and vegetation absent

Middle IR P - Correlaticn unacceptable because of regional thermal
inertia effects.
- Hybrid when SNR low to moderate and vegetation pres~nt
- Feature matching generally undesirable unless high SNR
exists and vegetation is absent.

- Same as Optical /Near IR
Thermal IR - Same as Passive Middle IR

- Same as Optical/Near IR

v > 9 >

Microwave - Correlation when SNR low and microwave reflectance
dominates.
- Hybrid when SNR moderate and vegetation prcaent

- Feature matching when SNR high and vegetation absent

A - Corrslation when SNR low or with one-dimensional imaging
systems.
- Hybrid when SNR moderate, vegetation present or with two-
dimensional imaging systems.
- Feature matching generally unacceptable because of inade-
quate SNR unless specialized preprocesaing used,

Range or Phase - A - Correlatior only when'low SNF present
Modulated Sensors - Hybrid unnecessary since regional er~ors are generally
small,
- Feature matching desirable wher SNR high

* When moderate nonstructured errors or snow/ice/water are present, the hybrid approach must be used
with all systems except range or phase-modulated senscrs tu ensure update reliability.
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Correla‘ion is desirable in active and passive optical/near IR cases where a low SNR {s present. Sources
of this type include passive low-light level operation, low scene contrast operation, or when a high atmos-
pheric aerosol content is present in the imaging path. When significant vegetation is present in the
reference area, the hybrid approach is desirable, while feature extraction is reserved for cases when a high
SNR oxiats and vegetation that exhibits a time-varying regional boundary shift is absent.

Correlation class algorithmas provide unacceptable performance with passive middle and thermal IR and
generaily with pagsive microwave imagery (when misrowave emittance predom:inntes) due to contrast
reversals or mnderate {o large time-varying regional errors induced by materia’. thermal inertia effects.
Traditional corrclation techniques,including binary conversion preprocessing, gene rally provide ineignifi-
cant performance improvement when applied to middie and thermal IR imagery and small tc moderate
improvemrnts with passive microwave imagery, The hybrid approach is preferable in cases where less
than 2 high SNR exists due to sensor, imaging contrast or atmospheric reradiation considerations, or when
a time-varying vegetation signatuve is present, Feature matching application is operationally limited as in
othe r spectral regions to cases where a high SNR exists and time-varying vegetation coverage is absent,

Comments given for the optical/near IR region are generally applicable for all map-matching systems
using active sensors. The principal limitations of active middle and (particularly) thermal IR systems ior
applications against natural materials is the low imaging contrast typically present. It is often necessary to
utilize dynamic range expansion preprocessing techniques with these sensor types, which limits the use of
feature matching methods in these cases unless a high data SNR exista,

Although atmospheric effects generally have a negligible impact on cadar image contrast, the moderate
to low SNR typically present for most proposed missi’ :~-borne systems coupled with specular material
returns from the reference avea provide other problems for operationsl map-matching systemas, With one-
dimensional radar map-matching systems correlation algorithms are usually preferred over feature
matching to minimize the number of discrets acatters required to ensure adequate performance, Hybrid
algorithms are preferable when a moderate SNR exists or when significant vegetation is present that
possesses a time-varying signature. Feature matching algorithme are generally unacceptable for pro-
cessing missile borne radar data because of typically low SNRs unless specialized preprocessing techniques
are used which emphasize stable,while deemphasizing potentially unstable,edges prescnt.

For range or phase-modulated sensors, the hybrid approach is generally unwarranted (unless a signifi-
cant amount of deciduous trees exist) because of the generally time-invariant nature of these forms of
reference imagery. The choice between co.relation and feature matching approaches here should be deter-
mined versus the expected SNR since predictive and nonstructured errors are generally small.

In addition to the caveats just presented, it should be recognized that other error types sometimes pre-
sent can significantly alter map-matching performance. Correlation and feature matching algorithm class
performance are sensitive to predictive {i. e., snow/ice/water complex) and nonstructurad (i. e., shadowing)
reference map errors, In the event that a high probability of time and space-varying snow/ice/water or
shadowing exists within the reference area, the hybrid algorithnm class is preferable. The only practical
exception to this, allowing adequate correlation or feature rratching performance, would involve the blockage
of only a small amount of the total map information content (i.e., number of independent elements) and/cr

total map area.

In summary, when sensor characteristics or operational considerations result in a low SNR and when the
selected reference area has a relatively time invariant signature, correlation class algorithms should be
considered. When a moderate SNR exists and predictive and nonstructured errors are expected, the hybrid
class is preferable. In cases where a high SNR exists and predictive and nonstructured errors are small,

feature mapping is desirable.

5. Performance prediciion

Major performance considerations for image matching systems involve (1) the avoidance of false fixes
during acquisition, and (2) the accuracy with which the position fix can be made., The major focus of this
paper is on the acquisition phase of image matching, which is the more difficult and important part of the
overall problem to be solved. The acquisition system designer relative to performance measures is con-
cerned (1) with developing general guidelines for performance as a function of sensor and computational
algorithm characteristics, and (2) realtime scene dependent estimates of system performance in order to
determine whether or not a position fix is valid. This sectiorn is therefore divided into two parts: one
dealing with the general development of performance guidelines for acquisition and the other dealing with
adaptive techniques for estimating system performance in real-time onbcard the vehicle.

5.1 Performgnce guidelines for systema

As pointed out above, the performance criteria for acquisition is concerned with the avoidance of falee
fixes as measured by its probability of occurrence, Pgr. Developing some general theoretical guidelines in
this area avoids the expenses sssociated with developing guidelines completely from Monte Carlo simula-
tions. The general theoretical development of determining Pgs or P_ (1 - Pgy)) begins with examining the
coxrelation surface shown in Figure 6. The correlation values can go broken into two groups--thcse asso-
siated with match and nonmatch correlation values, ¢ {J), which are located away from the central pesk. As
seen in Figure § these correlation valuss can be compactly represented by two statistical distributions--one
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associated with the nonmatch valuas and one associated with the match value(s).* The corrslation value(s)
associated with tha correct match peint may also take on a distribution of values due to noise and othar
errors (ruch as geomatric) in the systamn. Errors will have a tendency to spread out both the match and
nonmatch correlation distributions, The computation of the performance measurs involves datermining the
probability that a correlation value drawn from the distribution associated with the match point sxceeds all

correlation valuves drawn from di. ribution associatsd with nonmatch values.

NON MATCH POSITIONS MATCH POSITION NON MATCH POSITIONS
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Figure 6. Cutput of :orrelation proceass
Mathematically this can be e.pressed as the genersl expression shown in Figure 7, whers it s

3 necessary to compute for a given match correlation value the probability that the match correlation value
exceeds the nor vatch correlation value for all normatch poritions of comparison (Q) batween the sensed
image and reference maps with this exprassion being weighted by the distribution associated with thie match
values (30, 31), U the match and nonmatch correlation values are indeed independant, then, as shown in
step 2 of Figure 7, the probability expression can be computed using two separate distribution functions--ons

{or the match value and one for all the nonniatch val-es,

In the rea! world there sre generally spatial patterns in the sensed imagery which are partially repeated

in soms position of the refcrence map., This scens interredundancy grobiem can be a major source of
[. system fallures when compounded by noise and other srror sources. It also generally causes the correla-

tion value at some nonmatch points to be highly dependent on the match correlation, thus prevonting the two
distributions to be separated and requiring a joint distribution expresaion to be used in computing t:e proba-
bility that a nonmatch correlation value exceeds the match corrslation value. If one attempts to ba
mathematically correct in modeling this scene interredurdancy problem, the expression invelving the joiut
distribution function (for match and nonmatch values) causes one into & scene specific 'modus operandi" with
a probability expression which is too complicated to derive general results from.

Most authors, in attempting to develop a general P guideline, have ignored the implications of the scene
redundancy and have assumed the match and nonmatch correlation values to be independent, The impliza-
of avoiding to model the interscene redundancy probism are twofold. First, and foremost, the analysis
*Dus o correlation in the scene slements themselves sevural values around the correct match psuk may be

TN § a
DN PP N P Al Al "

Rt st et Al ko

r‘wm r—r

Ay KE Pl 4l tiees




S

which foliows to determine the P guidelines whould be considered a limi cass where nolse and other
appropriately modsled errors dominate the failure wnode. For situations where the scene sslectioa pro-
cetses have done & good job in screcaing out the scens redundancy failure mode, the analyasis could still
provide useful performance guid-lines, If, however, sufficient effort was not made in rnporly selecting
reference maps to avuid scene redvadancies, system performance is likely to be significantly worse than
pradicted by these guidelines. Second, other approximations and assumptions bayond this point take on less

nignificante.
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Figure 7. Probability expressions for correct match

Returning to Figure 7, in order to achisve tha next level of simplification from the general expression it
is necessary to assume all nonmatch correiation values are indepandent. Two factors invalidate this
asgsumption. First, the naturs by which some computational algorithms (i. 4., Mean Absclute Difference
(MAD)) process the map elements leads to adjacent correlation values being correlated and hence not
lndopcngont This problem can be overcomae by the avoidance of this type of algorithm, Another problam
arises from the fact that real world scere clements are almost always corrslated which leads to their
associated zorrelation vaiues being correlated. This problem can be overcome by modeling the scens to be
composed of a number of independent elements (less than tha total number of scene elsments) estimating the
number of equivalent independent slements in the scene, and using this number in the P, computation pro-
cess. Here not only must the scens be scaled by the corralation length factor, but equivalent scaling must
be performed on the numnber of noumatch comparison points.

Further simplification of the expreasion step 3 to step 4 requires all the nonmatch correlation valuss to
be identically distributed. In general the hetsrogeneocus nature of scens structure, i.s., the scene being
composed of homogeneous regions with different mean intensity values, can negate this assumption. The use
of algorithms which tend to homogenise scenes (such as the hybrid algorithm) can overcems this difficulty
aud make this assumption more realistic.

Since correlation values involve the summing of a large number of random variables (some combination
of the scans slements) the central limit theorem can be invoked to simplify the expression in step 4 further.
This asswnption impliss that the distribution of the match and noamatch correlation values is Gaussian,
n.:n‘. a further approximation can be applied to obtain a closed form expression for the performance
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Tc summarise, one cannot develop a useful general expresgion for computing Pe in the presence of
scene interredundancy problems and other external error sources such as noise ard distortions. If onc can
ignore the scene redundancy problam by a stringent scene selsction process, it is possible, using a series
of approximations and assumptions, to develop a P sxpression which yleids guidelines for rystein per-
formance in the presonce of nnise and other error srurces. The remainder of this section will examine
developing adaptive techniques for estimating system performance from the correlation surface itself.

In order to ensure mission sffectiveness and safs warhead arming, a criteria to e.timate whother the
guidance update is acceptable or not is desirable. Omne proposed technique involves a voting logic with three
successive update scenas. Hers, the detarmined fix point of two of the three correlated scenes must be
matched within an acceptable bound; else the fix ssquence ir rejected for guidance updating. Although
simple to implement and suitable for use with relatively invariant reference arean, this technique breaks
down when the update area {s missed altogether; or when significant vaviations from the uxpected scene
signature exist that can not be modeled & priorl. When coupled with the ichsrent modeling limitations of
rost sensor operating bands, this technique does not provide any indication of the uncertainty of the

individual fixes,

* Two basic techaniques exist which are capable of providing a better performar.) »stimate of update quality.
The first involves the analysis of the distribution of the raw sensor scene data. {Indcr conditions of cloud
cover or surface suow/ice/water the resulting ctandard deviation of the distribution will often approach that
of the noise equivalent (spectral) power of the sensor itself, and thus will be substant.ally smaller than that
from the unexpected update area. If a multimodel (histogram) distribution exists where the mean and
standard deviation of a region are substantially different than expected, the suspect points can be labeled
before further processing. When the rativ of the number of total imaged pointe versus those in the suspect
distribution region each a predetermined value, the image can be deleted irom the update or voting process.

A more reliable technique involves computing the correlation, hybrid or feature extraction surface, then
using properties or statistics of that distribution for estimsting update performance. A list of thene
techniques in order of increasing reliability is given in Table 11,

Table 11. Statistical Match Surface Methods for Estimating Fix Quality'

1. Main peak amplitude
2. Main peak to first or highest sidelobe
amplitude ratio,
3. Main peak amplitude vs background atatistice ratio
4. Statistics of main peak vs background
5. Ahove, with compensation for inter-point

scene correlation and algorithm contribution.

6. Above, with homogenenus region segmentation
of reference scene,

*Methods in increasing order of effectiveness

While all six approaches can be used with correlationr. or hybrid algorithms, only the first three are
compatible with featurs matchi techniques. (As given in Table 11, the sixth and most accurate approach
for fix performance estimation directly incorporates the hybrid algorithm.) Anm analytical relationship
between surface statistics and original scene properties may not exist because of the use of edge or vertex
data for matching with feature matching techniques. In either case, a decision threshold based on surface
properties or statistics for fix acceptability must be determinsd & priori from accurate simulation of the
update areas. The first three cases are simple to impisment, and utilize the 11:ain peak, ite ratio with the
first or highest sidelobe paak or its ratio with the surface background statistics.

The first case uses the amplitude of the main pesk and is ganerally unreliable, It is highly dependent on
the imaged "information content" (i.s., Nj) which can vary significantly with snvironmental distortiona and
SNR. The second utilizes the ratio of the main to first or higheet sidelobe peaks, It is generally unreliable
unless the ratio is very high or low. For realistic intermediate cases, the ratio will oscillate considerably
due to environmental distortions and SNR variations, Although an improvement over preceding cases, using

‘the ratio of the main peak versus background statistics, can oftan bs unreliable because estimates of the

original refarence and sensor scens statistical properties ure omitted which impact the matching surface,
hence this ratio, :

M bvnnd an tha

The final three approaches of varying degrees of completsnsss determine a probability of correct match

L o e T Tey

A



-24-

The fourth case utilises estimates of the main peak and background statistics to determine the degree of
separation betwean in and out of register distributions (hence P.). Although an improvement ovur the
preceding cases, it does not utilize estimates of the original scene utatistics and is also hiased by the
matching algorithm itself. An exampie of this case {s the Bhattachryya distance. In the next case, com-
pensation is made for both the interpoint scene correlation and the impact of the matching algorithms on the
surface statistics, If level shifts between regions in the update area do exist, this approach can he very
&ccurate.

The last approach utilizes the methodology of the previous case, but with region segmentation for hybrid
processing. Here, the reference scene is segmented into homogeneous regions and matched against the
unsegmented sensor image. Siuce diurnal or seasonal level shift variations occur in most spectral imagery,
compensation to region boundaries is generally required to snsure the accuracy of fix quality estimates. The
hybrid approach is generally inore reliable than one which segments both reference and senscr scenes befors
processing; sirce this method tends to amplify environmental and SNR induced region boundary distortions.
It is estimated that this hybrid algorithm has considerable utility in fix quality evaluation; since it incorpo-
rates the statistical properties of both the original and gorreljted reference and sensor scenes.

6.0 Summgry

This paper advances seven major points. First, there are map difference errors between the reference
map and sensor image which have time and spatial varying components, The magnitude of these errors is
highly sensor wavelength or frequency dependent; however, the statistics of the map difference errors can
be quantified for each sensor wavelength as a function of the matorial properties of the scene.

Second, an important aspect of the problem is to choose and to svaluate reference maps to avoid usiny
areas which:

1) do not contain sufficient information,

2) have s scene redundan~, problem, and

3] have materials at a wavelength under investigation with large signature oscidations.

Third, grouping errors and algorithms iunto the generic classes indicated in this paper simplifies the
analysis and enables the problem to be structured,

Fourth, certain algorithms can accommodate certain classes cof errors more readily than other types of
algorithmea. As certain sensor wavelengths have a class of errors which dominate, it is possible to pre-
determine which algorithm is most appropriate for dealing with scene data at a2 given sensor wavelength,
This paper defines those algorithm/sensor wavelength relationships for several specific operational condi-
tions,

Fifth, the computation of the probability of correct match is scene dependent, and hence any generaliza-
tion must be considered an approximation. Since ano absolute P, mensures can be determined, it is not
useful to develop optimal algorithms based on mathematical approximations to the general P_ formulation,
The more appropriate problem is to obtain the correct algorithm for accommodating the map difference
errors which are unticipated to occur and not to worry about which sub~class of algorithm is mathematically
optimal for the ideal, nonreal world case.

Sixth, it is possible to improve the process of updating missile position by using map-matching surface
data to estimate in real-time the performance of the system., These estimates, while appruximations, have
priven through experimentation useful in separating true matches from false matches and can be used in
weiyhting the accuracy of the fix position.

Seventh, a new class of map-matching algorithm, the hybrid algorithm, was prvsented which incorporates
many of the advantages associated with the feature matching algorithine while avoiding many of the pitfalls
associated with extracting features from noisy sensor images. It was shown to have a significant utility in
dealing with a large number of map difference errors.

7.0 Conclusions gnd recommendgtions

The major stumbling block ir analysing map-matching systems is the "scene." Variations in the
temporal and spatial characteristics of scenes mitigate the need for high-order algorithm refinement and
invalidate sophisticated math modeling of the process. Such variations in scens imagery are the major
problems in developing an automated system. Two major entities are required to deal with the problem:

(1) the establishment, and (2) an analysis of a data base devoted exclusively to the image dynamics probl- .,

A data base should be created for each sensor wavelength enumerated in this paper. The data base
should consiat of (1) a statistically representative set of reference maps covering the range of expected
materials, material interfaces and target types likely to be encountered, (2) an accompanying set of sensor
images (contained within the reference map boundary) which reflect the range of expucted temporal signa-
ture nrhﬂ:::. and (3) a library of the physical and wavelength dependent slectrical properties of "comnon"
scens materials.
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Having developad such a date base it is then necessiry to statistically quantify the nature of the scene
errors pressnt. Based on this quantification, the most appropriate algorithm class and preprocessing
choice for a particular wavelength (and possibly target type) can be determined, Finally, after evaluating
syctem parformance over the axpected ranje of scene errora and operational constraints it would be poasi-
ble to determine which ssusor wavelangths ave moat appropriate for the image matching tasks.
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Texture

The concept of texture from a scene composition/sensor resolution description has previously been intro-
duced. It is of interest to explore the source of the textural spectral signature variations present on a time
and space~varying basis within sensor imagery., Texture is effectively produced by two different types of
phenomena, .

In the first case, a material of different physical or electrical properties than its neighbors exists within
the scene. If it occupies one or more scene elements it will be resolved within the sensor image. It is also
possible to resolve this material on a subelement basis if its area times radiance is greater than that from
all other materials within the elemant, and if the resulting radiance is above the detectora SNR,

In the second case, a truly homogeneous material may exist within a region virtually independent of
resolution (i. e., dry beach sand). Texture may still be present due to three factors.

The first is the slope and slope azimuth of the material relative to the sun (or illuminator)-target-sensor
geometry. It is possible for areas with moderate slopes (20°—~30°) to produce substantially more or less
radiance depending on their orientation between illumination source and detector (this is especially impor-
tant when direct (i. e,, laser or sun) versus diffuse (i. e., skylight) irradiance exists).

For imaging lasers and radars, slope and slope azimuth between the illuminator-target-detector
geometry significantly impacts the magnitude of the returned target radiance. At least here, versus a
passive system, the illuminator is usually co-located near the detector. The net effect of this is to simplify
the governing geometry for determining the return vector of the propogated wave. Weak to moderate
reflectors oriented at steep incident angles to a co-located transmitter/detector can often produce a signifi-
cantly greater return than strong reflectors oriented less favorably.

For passive syatems where the illuminator (usually the sun)-vehicle geometry is generally not co-located,
shadowing is more difficult to evaluate. Here, shadowing is often a problem due to the time-varying sun-
target geometry conpled with slope and slope azimuth, aud surface roughness of the reference area. As a
consequence, shadowing can significantly impact daytime optical/near IR and middle IR imagery where &
strong solar component exists. Its effect in the thermal IR region is to prevent direct incident short wave-
length radiation from being absorbed by the target, thus reducing the diurnal temperature oscillation by
weakening the thermal inertia driving function. Because of the diffuse nature of passive microwave radi-
ation, the effect of shadowing on apparent brightness temperature is generally not a problem within a
reasonable range of antenna depressicn angles with this form of imagery for water and metal because of
their moderate to high microwave reflectances respectively, For materials with high microwave emittances,
shadowing weakens the thermal inertia driving function for diurnal temperature oscillation, and can reduce
the emissive power and the resulting observed apparent brightness temperature,

As with active illuminator systems, slope and slope azimuth play an important role in many passive
imaging systems. In the optical/near IR and middle IR regions it impacts the returned target radiance
similarly to active systems,although to a greater extent because of the varying solar-target geometry. Slope
and slope azimuth also produce differential heating from absorbed short wavelength solar radiation, which
cin have a moderate to strong impact on night-tirne middle IR and diurnal thermal IR imagery and a small to
mocerate effect on diurnal passive microwave imagery when a high microwave material emittance exists.

The necond parameter that can produce image texture is the material reflection coefficient or reflectanca
A variatinn in smooth surface reflected energy versus incidince angle exists due to (real and imaginary)
materjal elec.‘rical components. Because material reflectznce is the dominant energy balance parameter in
several speci-s! regions, its directional characteriatics can have a significant impact on the amount of
energy returned trom a target. The real component is the material dielectric component, while the imagi-
nary one equals th~ electrical conductivity divided by the angular frequency times the free-space
permittivity. For conductors {i.e., bare metals), the second component generally predominates. For
dielectrics (most naturcl materials) the first term is usually dominant since negligible electrical conduc~
tivity exists.

Given the electrical component values, the vertically or horizontally polarized directional reflectance for
a smooth material can be determined from Fresnel's equations at a particular wavelength (34). The values
computed by Fresnel's equations provide a measure of theoretical :naterial reflectance versus incident and
reflecte” - ~gles, Surface roughness height and orientation can, however, significantly impact the amount of
radianc tually reflected (or absorbed) by the material,

Consequently, the third paramuter of interest is the roughness of the surface itself, For the same
illumination source-detector geometry multiple reflections will occur within the material when the roughness
height to wavelength ratio is large. This results in an increase in absorptance and a consequent increase in
emittance in wavelength regions where this parameter is relevant. When the ratio of roughness height to
wavelength is small, multiple reflection effects diminish, and the resulting absorptance decreases toa
theoretical minimum for the material,
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The directional and bidirectional reflectances of a material in a given wavelength region are dependent on
the surface roughness as well as the governing electrical relationship. Unfortunately, it is difficult to
characterize surface roughness, The root mean square (rms) roughness sometimes used provides no infor-
mation pertaining to the statistical distribution of roughness around the rms value and the average slope of
the sides of the roughness peaks, although they can significantly influence directional and bidirectional
reflectance (34). As a result the directional and bidirectional reflectance characteristics that some
materials exhibit are due to a combination of zcomplex surface structure and surface impurities (i.e,, iron
oxide or moss) present together with the materials inherent electrical properties.

Surface roughness significantly impacts the returns from imaging lasers and radars depending on the
relevant geometry., When a shallow incidence angle exists between the illuminator and target, the net
effect for rough surfaces is often to return more radiance than from a smooth one because of the effective
presence of material corner reflectors. This is evident in radar data when examining imagery from smooth
versus rough fields or water. At steep incidence anglea, the reverse is true. Here, a smooth surface will
generally return more radiance than fromn a rough one.

Surface roughness can also impact the returned target radiance in the optical/near IR, and to a lesser
extent in the middle IR region, because of the predominance of the direct solar illumination component, The
effects are similar to those discussed under active illuminator systems. In the thermal IR region, an insig-
nificant amount of direct energy radiated by the sun reaches the surface and generally high emittance exist
for most natural materials (typically . 85 to . 99). As a consequence, the net effect here is to impact the
short wavelength absorptance and possibly the material thermal iuertia.

In the passive microwave imagery where high emittance materials are present which have a surface
roughness substantially greater than the imaging wavelength, effects similar te those in the thermal IR
can exist. Many materials such as metal, concrete, asphalt and smooth water behave specularly in the
passive microwave region (particularly at frequencies below 140 GHz) because their surface roughness is
small in comparison ‘o the imaging wavelength. * An interesting case of the effect of surface roughness on
material reflectance in this region occurs with water, Calm water behaves as a good specular reflector of
passive microwave radiation (second only to metal in this wavelength region). As surface roughness
increases, the magnitude of the sky radiation times microwave material reflectance term decreases due to
multiple reflections preaent. As a consequence, the emittance times the ground (water) temperature term
predominates in rough water where capillary waves exist, and ernissive power variations under clear skies
can be on the order of 20% to 30% between this and the smooth water case.
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